skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Qin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract On 2024 July 25, while observing the solar active region NOAA 13762 with the high-resolution 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory, we witnessed two mysterious phenomena: the partial detachment of filament strands from its main body in the chromosphere and the sudden disappearance of a sunspot penumbra in the photosphere, the former accompanied by small flares. Our analysis reveals a spatiotemporal correlation between the filament peeling process and the penumbral disappearance. To understand the above observations physically, we performed a magnetohydrodynamic simulation that successfully replicated the disappearance of the penumbra as a consequence of weakened horizontal magnetic field. The simulations demonstrate that both the filament peeling and the penumbral decay are driven by the same underlying process: the upward expansion of the magnetic flux rope induced by null point magnetic reconnection. These results suggest a novel mechanism by which the Sun sheds magnetic flux to interplanetary space in the form of filament peeling and penumbral disappearance. 
    more » « less
    Free, publicly-accessible full text available November 4, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Abstract We revisit an existing but unexplored finding on the calculation of the baseline (i.e., potential) magnetic energy in observed solar magnetic configurations and apply it to two series of high-cadence, cospatial, and cotemporal line-of-sight photospheric magnetograms with a factor of ∼4 difference in spatial resolution. The target is a small coronal hole, ∼80across. We find significant differences between the two data sets, with approximate factors of 2.4 in the unsigned magnetic flux, 2.1 in the potential magnetic energy, and 5.2 in the mean amplitudes of the energy variation, all in favor of the higher-resolution magnetograms. Additionally, we find a factor of 2.5 difference in the characteristic magnetic flux replenishment time, with configurations at higher resolution renewing their flux every 46 minutes on average. Energy decreases associated with apparent magnetic flux cancellation events in higher resolution yield power densities above 106erg cm−2s−1, seemingly sufficient to sustain coronal holes and drive the fast solar wind. For the first time, this represents apparent energy released at photospheric altitudes rather than energy deposited via the Poynting flux. Lower-resolution magnetograms give 5.4 times less power density output. These intriguing results could have wide-ranging implications for in situ solar wind measurements and their solar sources in the Parker Solar Probe mission, as well as for high-resolution observations featuring simultaneous photospheric and chromospheric magnetograms including, but not limited to, data from the Daniel K. Inouye Solar Telescope. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  5. Free, publicly-accessible full text available April 30, 2026
  6. Context.High-resolution magnetograms are crucial for studying solar flare dynamics because they enable the precise tracking of magnetic structures and rapid field changes. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO/HMI) has been an essential provider of vector magnetograms. However, the spatial resolution of the HMI magnetograms is limited and hence is not able to capture the fine structures that are essential for understanding flare precursors. The Near InfraRed Imaging Spectropolarimeter on the 1.6 m Goode Solar Telescope (GST/NIRIS) at Big Bear Solar Observatory (BBSO) provides a better spatial resolution and is therefore more suitable to track the fine magnetic features and their connection to flare precursors. Aims.We propose DeepHMI, a machine-learning method for solar image super-resolution, to enhance the transverse and line-of-sight magnetograms of solar active regions (ARs) collected by SDO/HMI to better capture the fine-scale magnetic structures that are crucial for understanding solar flare dynamics. The enhanced HMI magnetograms can also be used to study spicules, sunspot light bridges and magnetic outbreaks, for which high-resolution data are essential. Methods.DeepHMI employs a conditional diffusion model that is trained using ground-truth images obtained by an inversion analysis of Stokes measurements collected by GST/NIRIS. Results.Our experiments show that DeepHMI performs better than the commonly used bicubic interpolation method in terms of four evaluation metrics. In addition, we demonstrate the ability of DeepHMI through a case study of the enhancement of SDO/HMI transverse and line-of-sight magnetograms of AR 12371 to GST/NIRIS data. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. Abstract Computational inverse problems utilize a finite number of measurements to infer a discrete approximation of the unknown parameter function. With motivation from the setting of PDE-based optimization, we study the unique reconstruction of discretized inverse problems by examining the positivity of the Hessian matrix. What is the reconstruction power of a fixed number of data observations? How many parameters can one reconstruct? Here we describe a probabilistic approach, and spell out the interplay of the observation size (r) and the number of parameters to be uniquely identified (m). The technical pillar here is the random sketching strategy, in which the matrix concentration inequality and sampling theory are largely employed. By analyzing a randomly subsampled Hessian matrix, we attain a well-conditioned reconstruction problem with high probability. Our main theory is validated in numerical experiments, using an elliptic inverse problem as an example. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  8. Large-scale solar ejections are well understood, but the extent to which small-scale solar features directly influence the solar wind remains an open question, primarily due to the challenges of tracing these small-scale ejections and their impact. Here, we measure the fine-scale motions of network bright points along a coronal hole boundary in high-resolution Hαimages from the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory to quantify the agitation of open flux tubes into generating Alfvénic pulses. We combine the motion, magnetic flux, and activity duration of the flux tubes to estimate the energy content carried by individual Alfvénic pulses, which is ∼1025erg, adequately higher than the energies ∼1023erg estimated for the magnetic switchbacks observed by the Parker Solar Probe (PSP). This implies the possibility that the surface-generated Alfvénic pulses could reach the solar wind with sufficient energy to generate switchbacks, even though some of then are expected to be reflected back in the stratified solar atmosphere. Alfvénic pulses further reproduce for the first time other properties of switchbacks, including the filling factor above ∼8% at granular and supergranular scales, which correspond best to the lower end of the mesoscale structure. This quantitative result for solar energy output in the form of Alfvénic pulses through magnetic funnels provides a crucial clue to the ongoing debate about the dynamic cycle of energy exchange between the Sun and the mesoscale solar wind that has been raised, but has not been adequately addressed, by PSP near-Sun observations. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  9. Free, publicly-accessible full text available February 1, 2026
  10. Free, publicly-accessible full text available February 1, 2026